

බැටරියක වි.ගා.බ. සහ අභාන්තර පුතිරෝධය

If there is no current flow through a battery, the voltage across the battery is called the <u>Electro Motive Force</u> (EMF) of the battery.

බැටරියක් තුලින් ධාරාවක් නොගලන විට එහි අගු හරහා වෝල්ටීයතාවය, බැටරියේ විදාුුත් ගාමක බලය (වි.ගා.බ.) ලෙස හැඳින්වේ.

Any battery is having a resistance internally. It is call the Internal Resistance of the battery. This internal resistance cannot be measure by using an Ohmmeter or any other instrument directly.

ඕනෑම බැටරියක අභාාන්තරයෙහි යම් පුතිරෝධයක් පවතී. එය බැටරියේ අභාාන්තර පුතිරෝධය ලෙස හැඳින්වේ. මෙම අභාාන්තර පුතිරෝධය ඕම් මීටරයකින් හෝ චෙන යම් උපකරණයකින් සෘජු ලෙස මැනගත නොහැකිය.

In the diagram, EMF of the battery is "E" and the internal resistance is "r". V is the reading of the voltmeter connected across the battery, R is the resistance of the resistor connected with the battery and the current in the circuit is I. The current through the battery and resistor are same because the current taken by the voltmeter is negligible.

ඉහත රූපසටහනේ "E" යනු බැටරියේ විගාබ වන අතර "r" යනු අභාාන්තර පුතිරෝධයයි. V යනු, බැටරියේ අගු හරහා සම්බන්ධ කරඇති චෝල්ට්මීටරයේ පාඨාංකයයි. R යනු බැටරිය සමග සමාන්තරගත ලෙස සම්බන්ධ කර ඇති පුතිරෝධකයේ පුතිරෝධයයි. පරිපථයේ ගලන ධාරාව I වේ. චොල්ට්මීටරය තුලින් ගලන ධාරාව නොගිනිය හැකි තරම් කුඩා බැවින්, බැටරිය තුලින් ගලන ධාරාවත්, පුතිරෝධකය තුලින් ගලන ධාරාවත් සමාන වේ.

We can apply the Ohm's law to this circuit and get the following equation as the result.

මෙම පරිපථය සදහා ඕම්ගේ නියමය භාවිත කළවිට පහත සදහන් සමීකරණය ලැබේ.

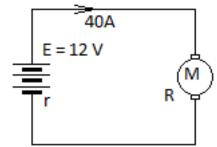
$$E = I(R+r)$$

= $IR + Ir$

When we apply the Ohm's law to the resistor, we can get the following equation,

පුතිරෝධකය සඳහා ඕම්ගේ නියමය භාවිත කළහොත් පහත සඳහන් සමීකරණය ලැබේ.

$$V = IR$$


Therefore, ඒ අනුව, E = V + Ir

Obviously V is smaller then E and Ir product is the voltage drop of the battery.

මෙහි V යන අගය E අගයට වඩා කුඩා බව පැහැදිලි වන අතර Ir ගුණිතය, බැටරියේ චොල්ටීයතා බැස්ම වේ.

Example:- While starting the engine of a car having a 12V battery, the voltage drops to 10 V and current consumption is 40A. What is the internal resistance of the battery and the resistance of the starter motor?

උදාහරණ: – මෝටර් රථයක එන්ජිම පණගැන්වීමේදී එහි බැටරියේ වොල්ටීයතාවය වෝ 12 සිට 10 දක්වා පහළ බසින අතර ගලන ධාරාව, ඇම්පියර් 40ක් වේ. බැටරියේ අභාගන්තර පුතිරෝධය සහ ස්ටාටර් මෝටරයේ පුතිරෝධය කොපමණද?

Apply Ohm's law for the system, මෙම පද්ධතිය සඳහා ඕම්ගේ නියමය භාවිත කළවිට

$$E = I(R+r), E = 12, I = 40$$

Therefore, ඒ අනුව,

$$12 = 40 (R+r)$$

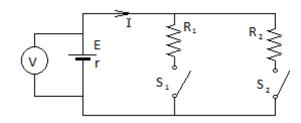
 $R+r = 12/40$
 $= 0.3\Omega$

Apply V = IR for the motor, මෝටරය සඳහා V = IR භාවිත කරමු, V=10, I=40

Therefore, ඒ අනුව

10 = 40R
R = 10/40
= 0.25
$$\Omega$$
 = 250 m Ω

resistance of the motor is 250 m Ω මෝටරයේ පුතිරෝධය මි.ඕම 250 කි.


Therefore, මම අනුව,
$$r = 0.3 - 0.25$$

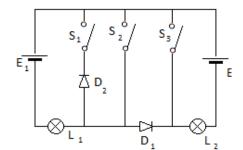
= $0.05 \Omega = 50 \text{ m}\Omega$

internal resistance of the battery is 50 m Ω බැටරියේ අභාන්තර පුතිරෝධය මිලි ඕම් 50 කි.

Questions

With reference of the circuit shown here answer for following questions.

- 1. If S_1 and S_2 open what is the reading of the voltmeter.
 - (a) V = E (b) V < E (c) V > E
- 2. If S_1 closed what is the reading of voltmeter?



- (a) V = E (b) V < E (c) V > E
- 3. When S_1 closed V = 1.4 Now S_1 and S_2 both close. What is the reading of the voltmeter?
 - (a) V = 1.4
- (b) V = 1.3
- (c) V > 1.4
- 4.When S_1 and S_2 closed $V = V_0$
 - (i) When S_1 close and S_2 open, $V = V_1$
 - (a) $V_0 < E$
- (b) $V_0 < V_1$ (c) $V_0 > V_1$ (d) $V_1 < E$

- (ii) When S_1 open and S_2 close, $V = V_2$
- (a) $V_1 = V_2$ (b) $V_1 < V_2$ (c) $V_1 > V_2$ (d) $V_2 < E$ (e) $V_1 < E$

- (iii) If $R_1 > R_2$
 - (a) $V_1 = V_2$
- (b) $V_1 < V_2$ (c) $V_1 > V_2$ (d) $V_2 < E$ (e) $V_1 < E$

5. In this diagram E_1 and E_2 are two identical cells. L_1 and L_2 are small bulbs D_1 and D_2 are two diodes. S_1 , S_2 and S_3 are switches.

- (i) When S_1 , S_2 and S_3 all are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both are dark
- (ii) When S_1 closed, S_2 and S_3 are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both dark
- (iii) When S_2 closed, S_1 and S_3 are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both bright
- (iv) When S_3 closed, S_1 and S_2 are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both bright
- (v) When S_1 , S_2 and S_3 all are closed

- (a) L_{1} bright and L_{2} dark
- (b) $L_1\ dark\ and\ L_2\ bright$
- (c) L_1 and L_2 both are bright

Answers Hi lighted

- 1. If S_1 and S_2 open what is the reading of the voltmeter.
 - (a) V = E (b) V < E (c) V > E
- 2. If S_1 closed what is the reading of voltmeter?
 - (a) V = E (b) V < E (c) V > E
- 3. When S_1 closed V = 1.4 Now S_1 and S_2 both close. What is the reading of the voltmeter?

- (a) V = 1.4 (b) V = 1.3 (c) V > 1.4
- 4.When S_1 and S_2 closed $V = V_0$
 - (i) When S_1 close and S_2 open, $V = V_1$
 - $(a) V_0 < E$
- (b) $V_0 < V_1$ (c) $V_0 > V_1$ (d) $V_1 < E$

- (ii) When S_1 open and S_2 close, $V = V_2$
 - (a) $V_1 = V_2$
- (b) $V_1 < V_2$ (c) $V_1 > V_2$ (d) $V_2 < E$ (e) $V_1 < E$

- (iii) If $R_1 > R_2$
- (a) $V_1 = V_2$ (b) $V_1 < V_2$ (c) $V_1 > V_2$ (d) $V_2 < E$ (e) $V_1 < E$

- 5. In this diagram E_1 and E_2 are two cells. L_1 and L_2 are small bulbs D_1 and D_2 are two diodes. $S_1 \text{,} \quad S_2 \quad \text{and} \quad S_3 \quad \text{are}$ switches.
- (i) When S_1 , S_2 and S_3 all are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both dark
- (ii) When S_1 closed, S_2 and S_3 are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both dark
- (iii) When S_2 closed, S_1 and S_3 are open
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L₁ and L₂ both bright
- (iv) When S_3 closed, S_1 and S_2 are open
 - (a) L_1 bright and L_2 dark
 - (b) L₁ dark and L₂ bright
 - (c) L_1 and L_2 both bright
- (v) When S_1 , S_2 and S_3 all are closed
 - (a) L_1 bright and L_2 dark
 - (b) L_1 dark and L_2 bright
 - (c) L_1 and L_2 both are bright